ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ

КОМИТЕТА ПО СОЦИАЛЬНОЙ ПОЛИТИКЕ И КУЛЬТУРЕ АДМИНИСТРАЦИИ г. ИРКУТСКА МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ГОРОДА ИРКУТСКА СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 66

(МБОУ г. Иркутска СОШ № 66)

улица Ленская, дом 2 а, г. Иркутск, телефон/факс 34-93-65, телефон 34-93-65 e-mail: school66-admin@mail.ru

Приложение к основной образовательной программе основного общего образования МБОУ г. Иркутска СОШ № 66 (ФК ГОС)

УТВЕРЖДЕНО

приказом № 228/1

от «30» августа 2017 го.

Директор МУОУ г. Иркутска СОШ

№ 66

В.Ф. Феда

РАБОЧАЯ ПРОГРАММА УЧЕБНОГО КУРСА

«Методы решения задач из курса планиметрии» для 9 класса (базовый уровень) Срок реализации программы 1 год

Составитель программы: Ригус Галина Игоревна, учитель математики МБОУ г. Иркутска СОШ № 66

Пояснительная записка

Рабочая программа разработана на основе требований к планируемым результатам основной образовательной программы основного общего образования МБОУ г. Иркутска СОШ №66 (ФК ГОС)

Рабочая программа включает в себя содержание, тематическое планирование, планируемые результаты обучения. Как *приложение 1* к программе включены оценочные материалы, *приложение 2* – методические материалы.

Количество учебных часов, на которые рассчитана программа:

			9 класс	всего
Количество	учебнь	IX	34	34
недель				
Количество	часов	В	1	
неделю				
Количество часов в год			34	34

Уровень подготовки учащихся: базовый

Место предмета в учебном плане: компонент образовательного учреждения.

Результаты ЕГЭ и ГИА последних лет показывают, что геометрия является наиболее слабым звеном в подготовке учащихся. И это объясняется рядом объективных и субъективных причин. Одна из которых, заключается в том, что учащиеся не овладевают методами решения задач, т.е. знание школьного курса геометрии в лучшем случае остаются на репродуктивном уровне, а не переходят в уровень умений. И связано это с тем, что чаще всего из-за временной ограниченности отсутствует работа по формированию метода в целом. С другой стороны, ряд задач ЕГЭ решается элементарно при знании определенного спектра свойств, не являющихся обязательными в школьном курсе.

Поэтому цель курса: систематизация школьного курса планиметрии посредством формирования методов решения задач данного раздела.

Задачи:

- Включение интеграционных механизмов в процесс формирования метода;
- Развитие дивергентного мышления;
- Развитие исследовательских умений посредством специфики задач и организации процесса обучения;
- Развитие мотивации к собственной учебной деятельности;
- Развитие УУД.

Ведущими в данном курсе являются логические УУД:

— анализ объектов с целью выделения признаков (существенных, несущественных);

- синтез составление целого из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;
- выбор оснований и критериев для сравнения, сериации классификаций объектов;
- подведение под понятие, выведений следствий;
- установление причинно- следственных связей;
- построение логической цепи рассуждений;
- доказательство;
- выдвижение гипотез и их обоснование.

Постановка и решение проблемы:

- формулирование проблемы;
- самостоятельное создание способов решения проблем творческого и поискового характера.

Содержание учебного предмета

Тема 1. Необходимые и достаточные условия

Понятие необходимые и достаточные условия. Составление перечня необходимых и достаточных признаков параллельных прямых, конгруэнтных углов, параллелограмма, принадлежности трех точек к одной прямой.

Тема 2. Метод треугольников.

Суть метода и компоненты. Понятие подобия фигур. Подобные треугольники. Признаки подобных треугольников. Выполняется практическая работа, тест №1 по теме "Признаки равенства треугольников". Рассматривается базовые задачи №2, 9, 12, 14.

Тема 3. Метод площадей.

Понятие площадь фигуры. Равновеликие, равносоставленные и равные фигуры. Суть метода и его компоненты. Формулы площадей фигур (смотри математический диктант). Тест №2 по теме "Площади". Рассматриваются базовые задачи №4, 6, 8.

Тема 4. Метод дополнительных построений.

Суть и компоненты метода. Рассматривается базовая задача №5. Рассматриваются приемы: продолжение медиан на тоже расстояние и достраивание до параллелограмма или до равновеликого треугольника; Продолжение на одну третью часть длинны медианы, проведение в трапеции через одну вершину прямую параллельную противоположной боковой стороне, либо параллельной диагонали. Продолжение боковых сторон трапеции до их пересечения. Проведение в трапеции отрезка, равного по длине верхнему основанию через вершину нижнего основания и др.

Тема 5. Метод вспомогательной окружности.

Суть метода и его компоненты. Тест №3 по теме "Подобные фигуры", Касательная, свойства и признаки. Рассматриваются базовые задачи № 1, 3, 7, 11. Проводится самостоятельная работа по теме «Вписанные и описанные многоугольники»

Тема 6. Метод координат.

Понятие координата, координатная плоскость. Основные формулы. Решение задач методом координат.

Тема 7. Векторный метод.

Понятие вектора. Основные формулы. Решение задач векторным методом. Рассматриваются базовые задачи № 15,16.

Тематический план

		Количество
N₂	Тема	часов
1	Необходимые и достаточные условия	2
2	Коллоквиум №1	2
3	Метод треугольников	4
4	Коллоквиум №2	2
5	Метод площадей	4
6	Метод дополнительных построений	4
7	Коллоквиум №3	4
8	Метод вспомогательной окружности	2
9	Коллоквиум №4	4
10	Метод координат	3
11	Векторный метод	3
12	Повторение	3
13	Зачет	3
	Итого:	34

Планируемые результаты освоения учебного предмета

Иметь представление: о сути метода треугольников, метода площадей, метода дополнительных построений, метода вспомогательной окружности., координатного и векторного метода.

Знать:

- 1. Теоретического содержания школьного курса геометрии (отраженные в коллоквиуме).
- 2. Признаки выбора методов.
- 3. Предписание использованию методов.

Уметь:

- 1. Выполнять анализ задачи.
- 2. Умение решать разные типы задач школьного курса геометрии.
- 3. Умение распознавать тип задачи, прием, метод ее решения.

- 4. Умение работать над задачей в соответствии с основными этапами.
- 5. Умение использовать методы в практике решения задач.

Иметь опыт работы над проектом осуществление его защиты.

Приложение 1. Оценочные материалы

Организация и проведение аттестации учеников.

Целью аттестации является определения соответствия достигнутого учащимися результата ожидаемым.

Формы организации контроля за достижениями обучающимися:

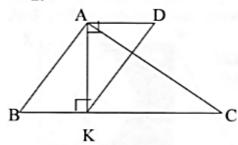
- 1. Текущий: устный и письменный опрос, проверочные, классные и домашние работы.
- 2. Тематический: тестирование, математический диктант, зачет, контрольная работа.
- 3. Итоговый контроль осуществляется в форме зачета, включающего теоретическую и практическую компоненты. Зачет выставляется при условии всех контрольных мероприятий, выполнения домашних заданий. А также защиты проекта.

Примеры круговых карточек по теме «Метод площадей»

Карточка 1

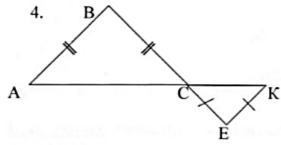
 Длины высот параллелограмма равны 2см и 1см, а периметр – 12см. Найдите площадь параллелограмма.

2.



Найдите отношение площади треугольника ABC к площади треугольника AKD. Если длины сторон AB и KD равны, длина AD равна 3см, длина KC – 12см.

 Найдите площадь прямоугольной трапеции, у которой длины меньшего бокового ребра и меньшего основания равны 2см, а больший угол -135°



Найдите отношение длин сторон AC к СК, если площадь треугольника ABC в 4 раза больше площади треугольника СКЕ.

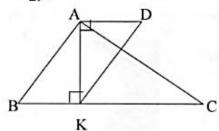
- ABCD трапеция, М середина боковой стороны CD. Длина стороны BC равна 2см, AD – 4см, длина высоты трапеции равна 2см. Найдите площадь треугольника ABM.
- Найдите отношение площади прямоугольного треугольника к длине его большего катета, если один катет имеет длину 2см, а гипотенуза -2√5 см.

Ответы: 1 +4+2+5 +3 +6 +1

Карточка 1

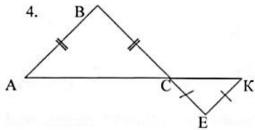
 Длины высот параллелограмма равны 2см и 1см, а периметр – 12см. Найдите площадь параллелограмма.

2.



Найдите отношение площади треугольника ABC к площади треугольника AKD. Если длины сторон AB и KD равны, длина AD равна 3см, длина KC – 12см.

 Найдите площадь прямоугольной трапеции, у которой длины меньшего бокового ребра и меньшего основания равны 2см, а больший угол -135°



Найдите отношение длин сторон AC к СК, если площадь треугольника ABC в 4 раза больше площади треугольника СКЕ.

- ABCD трапеция, М середина боковой стороны CD. Длина стороны BC равна 2см, AD – 4см, длина высоты трапеции равна 2см. Найдите площадь треугольника ABM.
- 6. Найдите отношение площади прямоугольного треугольника к длине его большего катета, если один катет имеет длину 2см, а гипотенуза $2\sqrt{5}$ см.

Ответы: 1 +4+2+5 +3 +6 +1

ВОПРОСЫ К КОЛЛОКВИУМУ

Четырехугольники.

Параллелограмм, его свойства и признаки. Теорема Фалеса и Вариньона.

Прямоугольник, ромб, квадрат, трапеция, их свойства и признаки.

Теорема Эйлера.

Теорема косинусов для четырехугольников.

Теорема Морлея.

Характеристические свойства четырехугольников.

Треугольники

Признаки подобных треугольников

Теорема Чевы и Менелая.

Теорема Ван-Обеля.

Теорема Жергона

Теорема Стюарта

Замечательные точки треугольника, их свойства.

Среднее геометрическое, арифметическое, гармоническое, среднее квадратичное.

Свойство медианы в прямоугольном треугольнике (и обратное утверждение)

Площадь

Понятие площади. Равновеликие, равносоставленные, равные фигуры.

Формулы нахождения площадей различных фигур (см. диктант).

Свойства площадей треугольников, имеющих по равному углу, по равной высоте. Площади подобных фигур.

Теоремы о площадях четырехугольников.

Площадь четырехугольников, вписанных в окружность и

описанных около окружности.

Окружность

Касательная, свойства, признаки.

Углы, связанные с окружностью.

Вписанные четырехугольники, описанные четырехугольники.

Вневписанные окружности.

Формула Эйлера.

Прямая Симсона.

Теорема Птолемея.

Задачи І. «Треугольники»

- №1. В остроугольном треугольнике ABC угол A равен 60° , BC = 10 см, отрезки BM и CK высоты. Найдите длину отрезка KM.
- №2. Найдите медиану, проведенную к гипотенузе прямоугольного треугольника, если известно, что его катеты равны 8 см и 6 см.
- №3. Найдите стороны треугольника, периметр которого равен 5,5 см, если известно, что стороны подобного ему треугольника равны 0,4 см, 0,8 см и 1 см.
- №4. Какие целые значения может принимать длина стороны AC треугольника ABC, если известно, что AB = 2.9 см, BC = 1.7 см? Ответ объясните.
- №5. В равностороннем треугольнике проведены две медианы. Найдите величину острого угла, образовавшегося при их пересечении.
- №6. На стороне *BC* треугольника *ABC* отмечена точка *K*. Известно, что сумма углов *B* и *C* равна углу AKB, AK = 5 м, BK = 16 м и KC = 2 м. Найдите сторону AB.
- №7. В остроугольном треугольнике ABC на стороне AC отмечена точка M, такая, что $\angle C$ = $\angle ABM$. Найдите сторону AB, если известно, что сторона AC = 9 м, а отрезок AM = 4 м.
- №8. В равностороннем треугольнике ABC проведена высота BD. Найдите углы треугольника ABD.
- №9. Найдите катеты прямоугольного треугольника, если известно, что его гипотенуза равна 6 $\sqrt{3}$ см, а один из острых углов в два раза больше другого.
- №10. В остроугольном равнобедренном треугольнике угол между основанием и высотой, проведенной к боковой стороне, равен 34°. Найдите углы этого треугольника.
- №11. В треугольник ABC вписан равнобедренный прямоугольный треугольник DEF так, что его гипотенуза DF параллельна стороне AC, а вершина E лежит на стороне AC. Найдите высоту треугольника ABC, если AC = 16 см; DF = 8 см.

- №12. Стороны треугольника равны 3 см, 2 см и $\sqrt{3}$ см. Определите вид этого треугольника.
- №13. Через вершину B равнобедренного треугольника ABC параллельно основанию AC проведена прямая BD. Через точку K середину высоты BH проведен луч AK, пересекающий прямую BD в точке D, а сторону BC в точке N. Определите, в каком отношении точка N делит сторону BC.
- №14. Из вершины B треугольника ABC проведены высота BH и биссектриса BD. Найдите угол между высотой BH и биссектрисой BD, если углы BAC и BCA равны 20° и 60° соответственно.
- №15. Внутри равностороннего треугольника ABC отмечена точка D, такая, что $\angle BAD = \angle BCD = 15^{\circ}$. Найдите угол ADC.
- №16. Длины двух сторон равнобедренного треугольника равны соответственно 6 см и 2 см. Определите длину третьей стороны этого треугольника.
- №17. Стороны треугольника равны 4 см, 5 см и 8 см. Найдите длину медианы, проведенной из вершины большего угла.
- №18. Медиана BM треугольника ABC перпендикулярна его биссектрисе AD. Найдите AB, если AC = 12 см.
- №19. Треугольник ABC равносторонний со стороной, равной a. На расстоянии a от вершины A взята точка D, отличная от точек B и C. Найдите угол BDC.
- №20. Из точки, лежащей на гипотенузе равнобедренного прямоугольного треугольника, на катеты треугольника опущены перпендикуляры. Найдите катет треугольника, если периметр полученного четырехугольника равен 12 см.

II. «Четырехугольники»

- №1. Найдите углы параллелограмма, если его неравные углы относятся как 5:7.
- №2. В параллелограмме ABCD биссектриса угла A пересекает продолжение BC в точке E. Найдите периметр параллелограмма, если BE = 16 см, CE = 5 см.
- №3. Высоты, проведенные из вершины ромба, образуют угол 30°. Найдите: а) углы ромба; б) углы, которые образуют диагонали с его сторонами.
- №4. В равнобедренный прямоугольный треугольник, катет которого равен 4,3 см, вписан квадрат таким образом, что у них один угол общий. Найдите периметр квадрата.
- №5. В ромбе высота, проведенная из вершины тупого угла, делит его сторону пополам. Найдите: а) углы ромба; б) его периметр, если меньшая диагональ равна 3,5 см.
- №6. В квадрате ABCD точки E и F середины соответственно сторон BC и CD. Точки A и E, B и F соединены отрезками. Докажите, что AE \perp BF.

- №7. В параллелограмме ABCD точки E, F середины соответственно сторон BC и AD. Определите вид четырехугольника BEDF.
- №8. Через середину гипотенузы прямоугольного треугольника проведены прямые, параллельные катетам. Определите вид получившегося четырехугольника и найдите его диагонали, если гипотенуза равна 9 см.
- №9. Стороны прямоугольника равны 72 см и 8 см. Найдите сторону равновеликого ему квадрата.
- №10. Средняя линия трапеции равна 8 см и делится диагональю на два отрезка, разность между которыми равна 2 см. Найдите основания трапеции.
- №11. Найдите углы ромба, если известно, что его периметр равен 8 см, а высота ромба равна 1 см.
- №12. Большее основание равнобедренной трапеции равно 8 м, боковая сторона равна 9 м, а диагональ равна 11 м. Найдите меньшее основание трапеции.
- №13. В прямоугольнике точка пересечения диагоналей удалена от меньшей стороны на 4 см дальше, чем от большей стороны. Найдите стороны прямоугольника, если известно, что его периметр равен 56 см.
- №14. Найдите периметр ромба, если известно, что один из углов ромба равен 60° , а меньшая диагональ равна 5 см.
- №15. Найдите высоту равнобедренной трапеции, если известно, что ее основания равны 10 см и 24 см, а боковая сторона равна 25 см.
- №16. Найдите диагонали равнобедренной трапеции, основания которой равны 4 см и 6 см, а боковая сторона равна 5 см.
- №17. Найдите сторону ромба, если известно, что его диагонали равны 24 см и 32 см.
- №18. Угол между высотами BK и BL параллелограмма ABCD, проведенными из вершины его острого угла B, в четыре раза больше самого угла ABC. Найдите углы параллелограмма.
- №19. Определите вид четырехугольника, вершины которого являются серединами сторон произвольного выпуклого четырехугольника.
- №20. В трапеции ABCD диагональ BD является биссектрисой прямого угла ADC. Найдите отношение диагонали BD к стороне AB трапеции, если $\angle BAD = 30^{\circ}$.
- №21. Углы при основании AD трапеции ABCD равны 60° и 30° , AD = 17 см, BC = 7 см. Найдите боковые стороны.
- №22. В параллелограмме ABCD диагональ BD перпендикулярна стороне AD. Найдите AC, если AD = 6 см, BD = 5 см.

- №23. Найдите меньший угол параллелограмма, если его стороны равны 1 и $\sqrt{3}$, а одна из диагоналей равна $\sqrt{7}$.
- №24. В трапеции ABCD стороны AB и CD равны, биссектриса тупого угла B перпендикулярна диагонали AC и отсекает от данной трапеции параллелограмм. Найдите величину угла BCD.
- №25. В прямоугольной трапеции ABCD с основаниями 17 см и 25 см диагональ AC является биссектрисой острого угла A. Найдите меньшую боковую сторону трапеции.

III. «Окружность и круг»

- №1. Из точки, принадлежащей окружности, проведены две равные хорды. Докажите, что диаметр, проходящий через эту точку, делит угол между хордами пополам.
- №2. В окружности проведены три равные хорды, одна из которых удалена от центра на 3 см. На каком расстоянии находятся от центра две другие хорды?
- №3. Хорда окружности пересекает ее диаметр под углом 30° и делится им на части, равные 12 см и 6 см. Найдите расстояние от середины хорды до диаметра.
- №4. Найдите диаметры двух концентрических окружностей, если ширина соответствующего кольца равна 12 см, а радиусы окружностей относятся как 5:2.
- №5. Окружность разделена тремя точками на части, которые относятся между собой как 2:3:5. Через точки деления проведены хорды. Определите вид получившегося треугольника.
- №6. Даны два непересекающихся круга радиуса R. Расстояние между их центрами равно d. Найдите сторону и площадь ромба, образованного касательными, проведенными из центра каждого круга к другому кругу.
- №7. Окружности, радиусы которых равны 1 см и 3 см, внешне касаются. Найдите угол между их внешними касательными.
- №8. Две окружности с радиусами 10 см и 17 см пересекаются. Их общая хорда равна 16 см. Найдите длину их общей касательной.
- №9. Две окружности, радиусы которых равны 2 см и 3 см, внутренне касаются. Из центра меньшей окружности проведен луч, перпендикулярный линии центров и пересекающий бо'льшую окружность, а из точки пересечения проведены две касательные к меньшей окружности. Найдите угол между касательными.
- №10. В окружности радиуса 6 см проведена хорда AB. Через середину M этой хорды проходит прямая, пересекающая окружность в точках C и E. Известно, что CM = 9 см, $ACB = 30^{\circ}$. Найдите длину отрезка CE.
- №11. Углы ADC и ABC вписаны в окружность. Какой может быть величина угла ADC, если известно, что \angle ABC = 56°?

- №12. Найдите площадь круга, если длина окружности равна $8\pi\Box$ см.
- №14. К окружности проведены касательные MA и MB (A и B точки касания). Найдите длину хорды AB, если радиус окружности равен 20 см, а расстояние от точки M до хорды AB равно 9 см.
- №15. Найдите длину окружности, если известно, что площадь круга равна $18\pi\Box$ см².
- №16. Две окружности, радиусы которых равны 9 см и 3 см, касаются внешним образом в точке A. Через точку A проходит их общая секущая BC, причем точка B принадлежит большей окружности. Найдите длину отрезка AB, если отрезок AC равен 5 см.
- №17. Точки A, B и C делят окружность на три части так, что $\cup AB : \cup BC : \cup AC = 4 : 7 : 9$. Определите наибольший угол треугольника ABC.
- №18. Два круга, радиусы которых равны 5 см, имеют общую хорду длины $5\sqrt{2}\,$ см. Найдите площадь общей части этих кругов.
- №19. Вписанный угол, образованный хордой и диаметром окружности, равен 72°. Определите, что больше: хорда или радиус окружности.

IV. «Многоугольники. Вписанные и описанные многоугольники»

- №1. Гипотенуза прямоугольного треугольника равна 15 см. Найдите радиус окружности, описанной около треугольника.
- №2. Острый угол прямоугольного треугольника равен 37°. Найдите углы, под которыми видны катеты из центра описанной около него окружности.
- №3. Найдите радиус окружности, описанной около равнобедренного треугольника, боковая сторона которого равна 10 см, а один из углов равен 120°.
- №4. Можно ли описать окружность около четырехугольника, углы которого, взятые последовательно, относятся как 2:3:4:11?
- №5. Найдите углы вписанного в окружность четырехугольника, если противоположные углы относятся как 2:3 и 4:5.
- №6. В прямоугольный треугольник с острым углом 40° вписана окружность. Найдите углы, под которыми видны стороны данного треугольника из центра вписанной в него окружности.
- №7. Углы треугольника относятся как 2:3:4. Под какими углами видны стороны треугольника из центра вписанной окружности.
- №8. Найдите радиус окружности, вписанной в ромб, бо'льшая диагональ которого равна 18 см, тупой угол равен 120°.
- №9. Найдите длину окружности, описанной около прямоугольного треугольника с катетом b и прилежащим к нему острым углом α.

- №10. Найдите радиус окружности, описанной около трапеции, стороны которой равны 2 см, 1 см, 1 см.
- №11. Три последовательные стороны описанной около круга трапеции равны 13 см, 8 см и 13 см. Найдите радиус круга.
- №12. В равнобедренную трапецию с основаниями 18 см и 6 см вписан круг. Найдите его радиус и углы трапеции.
- №13. Найдите радиус окружности, вписанной в параллелограмм, если его диагонали равны 12 см и $3\sqrt{2}$ см.
- №14. Найдите радиус окружности, вписанной в треугольник BCD, если она касается стороны BC в точке P и известно, что BD = BC = 15 см, CP = 12 см.
- №15. Найдите радиус окружности, описанной около трапеции, если известно, что средняя линия трапеции равна 14 см, боковая сторона равна 4 $\sqrt{2}$ см, а одно из оснований трапеции является диаметром описанной окружности.
- №16. В равнобедренную трапецию, один из углов которой равен 60° , а площадь равна 24 $\sqrt{3}$ см², вписана окружность. Найдите радиус этой окружности.
- №17. Основание остроугольного равнобедренного треугольника равно 48 см. Найдите радиус вписанной в него окружности, если радиус описанной около него окружности равен 25 см.
- №18. В равнобедренную трапецию с боковой стороной, равной 10 м, вписана окружность радиуса 3 м. Найдите площадь трапеции.
- №19. Найдите площадь круга, описанного около правильного шестиугольника со стороной 3 см.
- №20. В окружность вписан прямоугольник, стороны которого равны 6 см и 8 см. Найдите длину этой окружности.
- №21. Найдите радиус окружности, вписанной в равнобедренную трапецию, если средняя линия трапеции равна 12 м, а косинус угла при основании трапеции равен $\frac{\sqrt{7}}{4}$.
- №22. Найдите площадь круга, описанного около квадрата со стороной 6 см.
- №23. Найдите площадь правильного многоугольника, если его внешний угол равен 30° , а диаметр описанной около него окружности равен 8 см.
- №24. В прямоугольный треугольник вписана окружность радиуса 4 см. Найдите периметр этого треугольника, если известно, что его гипотенуза равна 26 см.
- №25. Найдите число сторон выпуклого многоугольника, сумма внутренних углов которого равна 4320° .

- №26. Найдите диагональ A1A3 правильного восьмиугольника A1A2...A8, если площадь треугольника A1A2A5 равна $9\sqrt{2}\,$ м.
- №27. Сторона правильного шестиугольника, описанного около окружности, равна 2 см. Найдите сторону правильного треугольника, вписанного в эту окружность.
- №28.На стороне AB параллелограмма ABCD как на диаметре построена окружность, проходящая через точку пересечения диагоналей и середину стороны AD. Найдите углы параллелограмма.
- №29. Сторона ромба равна 10, а один из его углов равен 30° . Найдите радиус окружности, вписанной в ромб.
- №30. Известно, что в равнобокую трапецию с боковой стороной, равной 5, можно вписать окружность. Найдите длину средней линии трапеции.
- №31. В треугольник ABC вписана окружность, которая касается сторон AB и BC в точках E и F соответственно. Касательная MK к этой окружности пересекает стороны AB и BC соответственно в точках M и K. Найдите периметр треугольника BMK, если BE = 6 см.
- №32. Окружность радиуса R касается гипотенузы равнобедренного прямоугольного треугольника в вершине его острого угла и проходит через вершину прямого угла.

Найдите длину дуги, заключенной внутри треугольника, если $R = \frac{8}{\pi}$

- №33. Через вершины A, B и C ромба ABCO проведена окружность, центром которой является вершина O. Найдите длину дуги AC, содержащей вершину B, если длина всей окружности равна 30 см.
- №34. Большая диагональ ромба равна 12 см, а один из его углов равен 60° . Найдите длину вписанной в него окружности.
- №35. К окружности, радиус которой равен 3, из точки, удаленной от центра окружности на расстояние 5, проведены две касательные. Вычислите расстояние между точками касания.
- №36. Около правильного шестиугольника со стороной 8,5 описана окружность. Около этой окружности описан правильный четырехугольник. Найдите сторону четырехугольника.
- №37. Площадь треугольника, описанного около окружности, равна 84 см². Найдите периметр треугольника, если радиус окружности равен 7 см.
- №38. Найдите больший угол треугольника, если две его стороны видны из центра описанной окружности под углами 100° и 120° .
- №39. В равнобедренном треугольнике центр вписанной окружности делит высоту в отношении 17: 15, а боковая сторона равна 34 см. Найдите основание треугольника.

V. «Площади плоских фигур»

№1. Площадь прямоугольника равна 520 м^2 , а отношение его сторон равно 2:5. Найдите периметр данного прямоугольника.

- №2. Стороны параллелограмма равны 5 см и 11 см. Найдите его площадь, если один из углов равен 30° .
- №3. Найдите площадь ромба со стороной 24 см и углом 120°.
- №4. Найдите площадь параллелограмма, периметр которого равен 42 см, а высоты равны 8 см и 6 см.
- №5. Найдите периметр ромба, площадь которого равна 48 см², а острый угол равен 30°.
- №6. Найдите площадь равнобедренной трапеции, у которой основания равны 8 см и 18 см, а боковая сторона равна средней линии.
- №7. В прямоугольной трапеции бо'льшая боковая сторона равна сумме оснований, высота равна 12 см. Найдите площадь прямоугольника, стороны которого равны основаниям трапеции.
- №8. Стороны треугольника относятся как 3:25:26. Его площадь равна 144 см 2 . Найдите периметр данного треугольника.
- №9. Основание равнобедренного треугольника равно 5 см. Медианы боковых сторон перпендикулярны. Найдите площадь данного треугольника.
- №10. В прямоугольном треугольнике сумма катетов равна m, а гипотенуза равна c. Найдите площадь треугольника, не вычисляя его катетов.
- №11. В четырехугольнике ABCD диагонали перпендикулярны и равны 4 см и 11 см. Найдите его площадь.
- №12. Точка касания круга, вписанного в прямоугольный треугольник, делит гипотенузу на части, равные 4 см и 6 см. Найдите площадь этого круга.
- №13. Дана прямоугольная трапеция ABCD~(AD-большее основание, $AB\perp AD$). Площадь трапеции равна 150 $\sqrt{3}~\text{см}^2$, $\angle~CDA = \angle~BCA = 60^\circ$. Найдите диагональ AC.
- №14. Площадь параллелограмма равна 45 $\sqrt{3}$ см², $\angle A = 60^{\circ}$, AB : AD = 10 : 3. Биссектриса угла A пересекает сторону параллелограмма в точке M. Найдите длину отрезка AM.
- №15. Диагонали трапеции ABMK пересекаются в точке O. Основания трапеции BM и AK относятся соответственно как 2:3. Найдите площадь трапеции, если известно, что площадь треугольника AOB равна 12 см^2 .
- №16. Две стороны параллелограмма равны 13 см и 14 см, а одна из диагоналей равна 15 см. Найдите площадь треугольника, отсекаемого от параллелограмма биссектрисой его угла.
- №17. Найдите площадь параллелограмма KMNO, если его большая сторона равна 4 $\sqrt{2}$ см, диагональ MO равна 5 см, а угол MKO равен 45°.

- №18. Средняя линия трапеции равна 15 м, сумма углов при одном из оснований равна 90° . Найдите площадь трапеции, если одна боковая сторона равна $\sqrt{10}\,$ м, а разность оснований равна $10\,$ м.
- №19. В треугольнике ABC проведена медиана AM. Найдите площадь треугольника ABC, если $AC = 3 \sqrt{2}$ м, BC = 10 м, $\angle MAC = 45^{\circ}$.
- №20. Найдите площадь параллелограмма OMPK, если его сторона KP равна 10 м, а сторона MP, равная 6 м, составляет с диагональю MK угол, равный 45°.
- №21. Площадь равнобедренного треугольника ABC с основанием BC равна 160 м², боковая сторона равна 20 м. Высоты BK и AH пересекаются в точке O. Найдите площадь треугольника ABO.
- №22. В треугольнике $CEH \ \angle C = 45^{\circ}$, точка T делит сторону CE на отрезки CT = 2 м и ET = 14 м, $\ \angle CHT = \ \angle CEH$. Найдите площадь треугольника CHT.
- №23. Площадь ромба ABCD равна $242\sqrt{2}$. Вычислите сторону ромба, если один из его углов равен 135° .
- №24. В треугольник ABC вписан квадрат так, что две его вершины лежат на стороне AB и по одной вершине на сторонах AC и BC. Найдите площадь квадрата, если AB = 40 см, а высота, проведенная из вершины C, имеет длину 24 см.
- №25. В равнобокой трапеции одно из оснований в два раза больше другого. Диагональ трапеции является биссектрисой острого угла. Найдите меньшее основание трапеции, если ее площадь равна $27\sqrt{3}$ см².
- №26. Треугольник ABC, стороны которого 13 см,14 см и 15 см, разбит на три треугольника отрезками, соединяющими точку пересечения медиан M с вершинами треугольника. Найдите площадь треугольника BMC.
- №27. Одна из диагоналей прямоугольной трапеции делит эту трапецию на два прямоугольных равнобедренных треугольника. Какова площадь этой трапеции, если ее меньшая боковая сторона равна 4?
- №28. На сторонах AB и AC треугольника ABC, площадь которого равна 50, взяты соответственно точки M и K так, что AM : MB = 1:5, а AK : KC = 3:2. Найдите площадь треугольника AMK.
- №29. Медианы BM и CN треугольника ABC пересекаются в точке K. Найдите площадь треугольника BKN, если площадь треугольника ABC равна 24.

VI. «Координаты и векторы»

№1. Даны векторы: \vec{a} (m;12), \vec{b} (3;–5), \vec{c} (–1; 2n). Найдите числа m и n, если $\vec{c} = \vec{a} + \vec{b}$.

№2. Дан вектор \vec{a} (-8; 6). Найдите координаты вектора \vec{b} (x; y), такого, что \vec{b} сонаправлен с \vec{a} и его длина в два раза больше, чем у вектора \vec{a} .

№3. Найдите координаты точки A(x; y), если она симметрична точке B(-20; 11) относительно точки M(0; -5).

№4. Найдите координаты точки C(x; y), если она принадлежит оси абсцисс и одинаково удалена от точек A(-14; 5) и B(3; 8).

№5. Даны точки М (-2; 6), К (1; 2) и L (4; -2). Определите, принадлежат ли данные точки одной прямой.

№6. Определите, будет ли треугольник OPQ равносторонним, если O — начало координат и P (5; 6), Q (-6; 5).

№7. То чка М делит отрезок КL в отношении 2:3. Найдите координаты вектора \overrightarrow{MK} , если $\overrightarrow{KL}(-5; -9)$.

№8. Даны векторы \vec{a} (–4, 12) и \vec{b} (х; –6). Найдите значение х, при котором данные векторы будут перпендикулярны.

№9. Найдите модуль вектора $\vec{a} + \vec{b}$, если \vec{a} и \vec{b} единичные векторы, и угол между ними равен 60° .

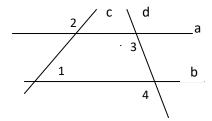
№10. Найдите угол между векторами \vec{a} и \vec{b} ,заданными своими координатами \vec{a} (1; $\sqrt{3}$) и \vec{b} (3; $\sqrt{3}$).

VII. «Углы»

№1. Величины углов ABC и KBC относятся как 7:3, а их разность равна 72° . Могут ли эти углы быть смежными?

№2. При пересечении двух прямых n и m секущей k образовалось восемь углов. Четыре из них равны 60° , а четыре другие -120° . Определите взаимное расположение прямых n и m.

№3. На рисунке: $\angle 1 = 55^\circ$; $\angle 2 = 125^\circ$; $\angle 3 = 123^\circ$. Найдите $\angle 4$.



Приложение 2.

Содержательно – методическая часть

№	Кол- во ч.	Тема	Цели занятий	Формы занятий	Деятельность учащихся, методы и приёмы обучения
1	2	Необходимые и достаточные условия	Формирование понятия необходимые и достаточные условия	Комбиниров анный	Методы: Лекция, метод штурма Методы: Беседа Д.У: Работа в группах
2	2	Коллоквиум №1	Систематизация знания по темам «Треугольники» и «Четырёхугольн ики»	Коллоквиум	Методы: Беседа Д.У: Предоставление обработанной информации
3	4	Метод треугольников	Формирование методов треугольника	Комбиниров анный	Методы обучения: частично-поисковый Д.У: работа в группах
4	2	Коллоквиум №2	Систематизация знаний по теме «Площадь»	Коллоквиум	Методы: Беседа Д.У: Предоставление обработанной информации
5	4	Метод площадей	Формирование метода площадей	Комбиниров анный	Метод обучения: частично – поисковый
6	4	Метод дополнительных построений	Формирование метода дополнительных построений	Комбиниров анный	Д.У.: работа в группах, рефлексия посредством решения круговых карточек
7	4	Коллоквиум №3	Систематизация знаний по теме «Окружность»	Коллоквиум	Методы: Беседа Д.У: Предоставление обработанной информации
8	2	Метод вспомогательной окружности	Формирование вспомогательно й окружности	Комбиниров анный	Метод обучения: частично — поисковый Д.У.: работа в группах
9	4	Коллоквиум №4	Систематизация знания по теме: «Векторы»	Коллоквиум	Методы: Беседа Д.У: Предоставление обработанной информации
10	2	Метод координат	Формирование координатного метода	Комбиниров анный	Метод обучения: частично – поисковый
11	2	Векторный метод	Формирование векторного метода	Комбиниров анный	Д.У.: работа в группах, рефлексия посредством решения круговых карточек

12	2	Повторение	Обобщение	Практикум	Д.У: решение задач, рефлексия
13	2	Зачет	Контроль уровня усвоения материала	Зачет	Д.У: самостоятельная работа
Bc	34				
ег					
0					

Основные формы организации учебного процесса.

Изучение материала проходит по следующей схеме:

- 1. Постановка задачи.
- 2. Изучение посредством литературы учащимися самостоятельно (дома) заданного раздела.
- 3. Презентация самостоятельной работы и оценка самостоятельной работы учащихся в классе (диалог)
- 4. Применение полученных знаний.

При таком подходе создаются достаточные условия для осуществления диалога являющегося важнейшей формой личностно – ориентированного обучения. Так как, сохраняют самостоятельно, субъекты диалогового общения уроке на интеллектуальное равноправие развивающие активную деятельность обучаемых, положительную мотивацию. Форма работы направлена на формирование информационной, коммуникативной и социальной компетенции. Способ презентации найденной и обработанной информации учитель предлагает выбрать самостоятельно, в зависимости от индивидуальных особенностей.

При этом доминантной формой обучения является поисковая, исследовательская деятельность учащихся, которая реализуется как при массовой и групповой работе, так и в ходе самостоятельной деятельности учащихся.

Организация и проведение аттестации учеников.

Целью аттестации является определения соответствия достигнутого учащимися результата ожидаемым.

Формы организации контроля за достижениями обучающимися:

- 4. Текущий: устный и письменный опрос, проверочные, классные и домашние работы.
- 5. Тематический: тестирование, математический диктант, зачет, контрольная работа.
- 6. Итоговый контроль осуществляется в форме зачета, включающего теоретическую и практическую компоненты. Зачет выставляется при условии всех контрольных мероприятий, выполнения домашних заданий. А также защиты проекта.

График контрольных мероприятий

No	Тема	Форма
- · ·	1 Civia	± opiiu

1	Необходимые и достаточные условия.	Составление карточек.
2	Коллоквиум №1.	Зачет.
3	Метод треугольников.	Тест №1. Практическая работа
4	Коллоквиум №2.	Зачет.
5	Метод площадей.	Тест №2. Математический диктант.
6	Метод дополнительных построений.	Разработка презентации.
7	Коллоквиум №3.	Зачет.
8	Метод вспомогательной окружности.	Тест №3. Математический диктант.
9	Коллоквиум №4.	Зачет.
10	Метод координат.	Математический диктант.
11	Векторный вектор.	Математический диктант.

Базовые задачи

БАЗОВЫЕ ЗАДАЧИ

- 1. В остроугольном треугольнике ABC проведены высоты AA_1 и CC_1 . Доказать, что треугольник A_1BC_1 подобен данному с коэффициентом подобия, равным $\cos B$.
- 2. Доказать, что биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам.
- 3. Доказать, что в произвольном треугольнике ABC имеет место зависимости $l_b^2 = ac a_1c_1$, где l_b длина биссектрисы угла B; а, с длины сторон BC и BA соответственно; a_1 и c_1 длины отрезков, на которые биссектриса угла B делит сторону AC, прилежащих к сторонам BC и BA соответственно.
- 4. Доказать, что в произвольном треугольнике ABC длина 1_b биссектрисы угла B выражается формулой $1_b = \frac{2ac \cdot cos \frac{B}{2}}{a+c}$, где a и с длины BC и AB соответственно.
 - 5. Доказать, что в произвольном треугольнике имеют место следующие зависимости: $m_a^2 = \frac{b^2}{2} + \frac{c^2}{2} \frac{a^2}{4}$ $m_b^2 = \frac{a^2}{2} + \frac{c^2}{2} \frac{b^2}{4}$ $m_c^2 = \frac{a^2}{2} + \frac{b^2}{2} \frac{c^2}{4}$

Где abc - длины сторон треугольника, m_a , m_b , m_c -длины медиан, проведенных к соответствующим сторонам.

- 6. Доказать, что радиус окружности, вписанной в треугольник, выражается формулой $r=\frac{S}{p}$, где S площадь треугольника, p его полупериметр.
 - 7. Доказать, что радиус вписанной в прямоугольный треугольник

окружности выражается формулой $r = \frac{a+b-c}{2}$, где a и b – катеты, c – гипотенуза данного треугольника.

- 8. Доказать, что площадь любого четырехугольника равна половине произведения его диагоналей, умноженной на синус угла между ними.
- 9. В трапеции ABCD основания AD и BC равны а и b соответственно. Через точку E, принадлежащую стороне AB и делящую ее в отношении AE : BE = m : n, проведена прямая, параллельная основаниям трапеции и пересекающая сторону CD в точке F. Доказать, что $EF = \frac{an + bm}{m + n}$.
- 10. Доказать, что в равнобедренной трапеции перпендикуляр, опущенный из вершины меньшего основания на большее, делит его на части, большая из которых равна по длине средней линии трапеции.
- 11. Доказать, что если в равнобокую трапецию вписана или можно вписать окружность, то высота трапеции есть среднее геометрическое ее оснований.
- 12. Доказать, что сумма квадратов длин диагоналей параллелограмма равна сумме квадратов длин его сторон.
- 13. Доказать, что если через точку, взятую внутри круга, проведены две произвольные хорды, то произведения длин отрезков каждой из хорд равны.
- 14.Из точки A, взятой вне окружности, проведены к ней касательная AB и произвольная секущая, пересекающая окружность в точках C и D. Доказать, что квадрат длины касательной равен произведению секущей на длину ее внешней части, то есть $AB^2 = AD \cdot AC$.
- 15.В треугольнике ABC на стороне AC взята точка D так, что $\frac{AD}{DC} = \frac{m}{n}$. Тогда имеет место, следующее соотношение: $\overrightarrow{BD} = \frac{n}{m+n} \overrightarrow{BA} + \frac{m}{m+n} \overrightarrow{BC}$.
 - 16.Если точка М и N делят отрезки AB и CD соответственно в равных

отношениях так, что
$$\frac{AM}{MB} = \frac{CN}{ND} = \frac{m}{n}$$
, то выполняется равенство: $\overrightarrow{MN} = \frac{n}{m+n} \overrightarrow{AC} + \frac{m}{m+n} \overrightarrow{BD}$.

17.В треугольнике ABC точки A_1 и B_1 расположены на сторонах BC и CA соответственно так, что $\frac{BA_1}{CA_1} = \frac{a}{b}$ $\frac{CB_1}{AB_1} = \frac{d}{k}$. Прямые AA и BB пересекаются в точке Z. Найдите отношения $\frac{AZ}{A_1Z}$ и $\frac{BZ}{B_1Z}$.

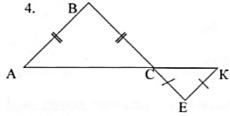
Примеры круговых карточек по теме «Метод площадей»

Карточка 1

- Длины высот параллелограмма равны 2см и 1см, а периметр 12см. Найдите площадь параллелограмма.
- A D

Найдите отношение площади треугольника ABC к площади треугольника AKD. Если длины сторон AB и KD равны, длина AD равна 3см, длина KC – 12см.

 Найдите площадь прямоугольной трапеции, у которой длины меньшего бокового ребра и меньшего основания равны 2см, а больший угол -135°



Найдите отношение длин сторон AC к СК, если площадь треугольника ABC в 4 раза больше площади треугольника СКЕ.

- ABCD трапеция, М середина боковой стороны CD. Длина стороны BC равна 2см, AD – 4см, длина высоты трапеции равна 2см. Найдите площадь треугольника ABM.
- 6. Найдите отношение площади прямоугольного треугольника к длине его большего катета, если один катет имеет длину 2см, а гипотенуза $2\sqrt{5}$ см.

Ответы: 1 +4+2+5 +3 +6 +1